
ZFS Hybridpools on a
napp-it ZFS Storageserver

published: 2023-Nov-20 (c) napp-it.org

Licence:
CC-BY-SA see http://creativecommons.org/licenses/by-sa/2.0/

 ZFS Hybridpools

 1. About Hybridpools

 2. Hybridpool Layout

 3. Create and manage Hybridpools

 4. more

1. About ZFS Hybridpools

ZFS Hybridpools are datapools buld from cheap and large disks for mass storage with additional fast SSD/NVMe
disks to improve performance for some data (Tiering), read access (L2Arc caching) or data security on sync
writes (Slog).

ZFS Data Tiering is a method to store some data on expensive/fast special vdevs (SSD/NVMe=Tier-1 storage)
and other data on cheaper/ slower vdevs (disks=Tier-2 storage) in a hybrid pool. Usually you want newest/hot
or performance critical data on the fast Tier-1 and older or uncritical cold data on the cheaper slower/cheaper
Tier-2.

With ZFS you have three options for data tiering.

1.1 Blockbased tiering for small io based on physical data structures.

You can control onpool file blocksize with the ZFS recsize setting. This setting affects the maximal size of
datablocks a file is split on a pool. A 200K file with 128K recsize is stored in two 128K blocs. If filesize is lower
than recsize, blocksize is dynymically (beside draid) reduced to a smaller blocksize to reduce capacity waste.
This means for a 200K file and a recsize of 256K or larger that only one 256k block is written. Small io and
meta-data is the default ZFS tiering method when you use a hybrid ZFS pool. With a small blocksize like 8K
only metadata and very small files are stored on the special vdev tier. A small blocksize setting of 64K will store
most office files on the special vdev Tier. For larger files you will see no improvement due a special vdev hybrid
pool as they are always stored on the slower Tier-2 vdevs. Metadata and small io is fine for special vdevs with
5-20% of pool capacity.

1.2 Blockbased tiering of whole filesystems based on ZFS small datablock and recsize settings

If you set the small blocksize property of a ZFS filesystem to the same or larger value as recsize ex the default
128, all files not only small ones are stored on the special vdev. For such filesystems performance is equal to
a SSD/NVMe only pool but you can decide per filesystem if files should be stored on fast Tier-1 or slow Tier-2
storage. As all files and all snaps of such filesystem are on fast Tier-1 storage, you need a larger special vdev,
say 20-60% of pool capacity.

Examples
File=smaller 128K, small blocksize=64K and recsize=128K:
file is stored on the tier-1 special vdevs (blocksize is dynamically reduced ex to 64K when filesize is < recsize)

File=128K or larger, small blocksize=64K and recsize=128K:
file is stored on the tier-2 vdevs (blocksize 128K)

This behaviour is very helpful as you can create a filesystem for hot/performance critical data and another for
cold/ archival data based on small blocksize and recsize settings. This is the suggested tiering option on ZFS.

1.3 Manual tiering of hot/cold files

This is the classic tiering approach. You can decide where files are stored or you can move files between fast
Tier-1 and slow Tier-2 with filepaths remains the same. This filebased tiering is not supported by ZFS although
you can initially tier files due a recsize/small blocksize setting and move files when you switch recsize setting
below or above the small blocksize value, then rename the file and copy it back again This results in a move
between Tier-1 (special vdev) and Tier-2 (regular vdev) under the identical file path.

Main problem:
You can store files on a selected Tier or move a file between Tiers but any file edit will store the edited file due
Copy on Write according to the then current recsize setting on one of the Tiers. Initial tiering of a file is not
persistent on ZFS.

Manual tiering is therefor only an option if the default Tier is the special vdev. This means that all new or
edited files are always stored on fast Tier-1 (recsize <=small blocksize). To limit the needed capacity of fast
Tier-1 storage, you can move cold/older files some time after saving or last edit to Tier-2 vdevs. Hot/active data,
metadata and small files is then always on Tier-1, larger and older files on Tier-2. This can be automated via
admintools or planned jobs. Such a data tiering of cold data limits needed size of a special vdev Tier.

2. ZFS hybrid pool layout

A special vdev is not a cache device but a part of a pool. This means that a special vdev lost is a pool lost.
A special vdev can be a 2/3 way mirror not a Raid-Z. Use at least a 2way mirror, for very critical data use 3way.

The size of the special vdev (you can add several vdev mirrors) depend on the amount of data and snaps that
you want to store on fast tier-1 storage compared to slow tier-2 storage. If you only want metadata and very
small io on tier-1 with a small blocksize setting like 8K, around 10% of pool capacity for the special vdev is a
starting point ex 2 TB SSD in a 20TB pool. You can add more special vdevs when more tier-1 capacity is wanted.

If you mainly want office files on tier-1 with a small blocksize of 128K and 256K recsize, prefer 30%+ tier-1
capacity (6TB+ in a 20TB pool). If you plan to use filesystems with large VM files on fast tier-1, consider more
tier-1 capacity.

To reduce needed expensive tier-1 capacity, you can move cold data automatically (files created or last edited
longer then a week or month ago) from tier-1 to tier-2. Any file editing will automatically move files back to
tier-1 if filesystem recsize is <= small blocksize.

To reduce needed expensive tier-1 capacity, you should limit amount of snaps as they remain on tier-1 when
data is on tier-1. If you want more snaps, replicate such filesystems quite often to a pure tier-2 filesystems
with a more detailled snap history there.

A special vdev is a tiering method for data based on data blocksize. If you use ZFS realtime dedup you can add a
special vdev for dedup tables to a pool (also 2/3 way mirror, say 5GB per TB dedup data).

You must care about capacity in tier-1. When full data land on slow tier-2.

3. Special vs other vdev types

A special vdev tier-1 is not a cache but the area where a whole file is stored so unlike a cache it improves read
and write of whole files.

Another vdev type for hybrid ZFS pools is a L2Arc cache disk. Caching works on read last/read most ZFS data-
blocks ex 128k not whole files. The cache content is a duplicate of pool data what means that a failed L2Arc
does not affect pool integrity. As you need RAM to organize L2Arc, size should be no more than say 10x RAM.
Main advantage of an L2Arc over the faster rambased ARC is persistency and the option to activate read ahead.

Another vdev type for hybrid ZFS pools is a Slog device. This is not a cache but a protection unit for the ram-
based ZFS writecache. Think of it like a BBU unit on hardwareraid. It is never read beside a crash szenario where
otherwise lost writes are written to pool on next reboot. A Slog lost does not affect pool integrity beside some
data lost if it happens while the system is crashing with data still the rambased writecache. As an Slog must
only log a few seconds of last writes, 10GB is enough for an Slog.

3. Create and manage a ZFS hybridpool

3.1 Create a new datapool

Use napp-it menu Pools > Create Pool
to make a pool from one or more Sata/SAS disks either as a single basic vdev or mirror/Raid-Z vdev
Avoid basic vdevs without redundancy. If such a vdev fails, the pool is lost.

3.2 Extend datapool

Use napp-it menu Pools > Extend Pools
to extend a pool by more vdevs like mirrors or Raid-Z. In a hybridpool you can add faster SSDs/NVMes vdevs for
data tiering (special vdev mirror), dedup (dedup mirror), L2Arc readcache or Slog sync write protection.

As an option you can add hotspare disks that will replace faulted disks in a pool immediatly.

3.2 Control size and fillrate of Tier-1 special vdevs

Use menu Pools or „zpool list -v“ to check special vdev size and used %

3.2 Control small blocksize and recsize of a filesystem

Use menu ZFS Filesystems and click on current recsize or small block size to modify
or use „zfs set“

3.3 Analyze file location

There is no direct method to list files on a special vdev or on other vdevs. But you can list recsize, all files with
their onpool blocksize via zdb filesystem and the object/inode with ls -i example

fs get recsize,special_small_blocks tank/data;
zdb tank/data | grep plain;
ls -i /tank/data;

NAME PROPERTY VALUE SOURCE
tank/data recordsize 256K local
tank/data special_small_blocks 128K local

 Object lvl iblk dblk dsize dnsize lsize %full type

 2 1 128K 512 0 512 512 0.00 ZFS plain file
 4 1 128K 512 0 512 512 0.00 ZFS plain file
 6 1 128K 512 0 512 512 0.00 ZFS plain file
 60 1 128K 75K 44K 512 75K 100.00 ZFS plain file
 61 2 128K 191K 200K 512 191K 100.00 ZFS plain file
 63 1 128K 512 4K 512 512 100.00 ZFS plain file
 66 2 128K 256K 1.44M 512 1.50M 100.00 ZFS plain file
 148 1 128K 512 4K 512 512 100.00 ZFS plain file
 151 3 128K 128K 272M 512 284M 98.81 ZFS plain file
 153 1 128K 18.5K 20K 512 18.5K 100.00 ZFS plain file
 155 1 128K 512 0 512 512 0.00 ZFS plain file
 157 1 128K 512 4K 512 512 100.00 ZFS plain file

 61 191k.pdf
 66 PXL_20230825_100451098.jpg
 151 omnios-r151046.iso
 60 75k.pdf

The column dblk reports the datablocksize. As long as there is enough space on a special vdev, a dblk size lower
or equal the special_small_blocks size indicates that the file is on the special vdev. The Object id is the inode
number of a file that is reported via ls -i

To display files with their inode and last edit time you can use

61 /tank/data/191k.pdf 2023-10-14 10:17:14.809267600 +0000
64 /tank/data/PXL_20230825_100451098.jpg 2023-11-19 08:30:08.980373695 +0000
60 /tank/data/75k.pdf 2023-11-13 14:17:07.002134000 +0000
153 /tank/data/Thumbs.db 2023-11-19 08:54:45.258000000 +0000
4 /tank/data/.$EXTEND/$QUOTA 2023-11-11 17:51:04.496913784 +0000
151 /tank/data/omnios-r151046.iso 2023-05-02 08:26:30.278452500 +0000

A move of files between Tiers is basically a command like
zfs set recsize && rename file file.tier && copy file.tier file && rm file.tier

If there remains file.tier, something happened during copy ->
rename file.tier file

+ some logs and checks with a script

4. more to come

check https://www.napp-it.org/manuals or
https://forums.servethehome.com/index.php?threads/real-filebased-data-tiering-on-zfs.42159/#post-400661 or
https://illumos.topicbox.com/groups/discuss/Ta9815f4d6c901308-M387286ac67f9181a0778c540/files-on-a-
special-vdev-and-rule-based-data-tiering

https://www.napp-it.org/manuals%20
https://forums.servethehome.com/index.php%3Fthreads/real-filebased-data-tiering-on-zfs.42159/%23post-400661
https://illumos.topicbox.com/groups/discuss/Ta9815f4d6c901308-M387286ac67f9181a0778c540/files-on-a-special-vdev-and-rule-based-data-tiering
https://illumos.topicbox.com/groups/discuss/Ta9815f4d6c901308-M387286ac67f9181a0778c540/files-on-a-special-vdev-and-rule-based-data-tiering

